skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Njardarson, Jon_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly‐enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring‐opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly‐ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly‐ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di‐functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios. 
    more » « less
  2. Abstract The development of a low‐cost photopolymer resin to fabricate optical glass of high refractive index for plastic optics is reported. This new free radically polymerizable photopolymer resin, termed, disulfide methacrylate resin (DSMR) is synthesized by the direct addition of allyl methacrylate to a commodity sulfur petrochemical, sulfur monochloride (S2Cl2). The rapid rates of free radical photopolymerization confer significant advantages in preparing high‐quality, bulk optical glass. The low‐cost, optical glass produced from this photopolymer possesses a desirable combination of high refractive index (n ≈ 1.57–1.59), low birefringence (Δn < 10−4), high glass transition values (Tg ≈ 100 °C), along with optical transparency rivaling, or exceeding that of poly(methyl methacrylate) (PMMA) as indicated by very low optical absorption coefficients (α < 0.05 cm−1at 1310 nm) measured for thick glass DSMR photopolymer samples (diameter (D) = 25 mm; thickness = 1–30 mm). The versatile manufacturability of DSMR photopolymers for both molding and diamond turn machining methods is demonstrated to prepare precision optics and nano‐micropatterned arrays. Finally, large‐scale 3D printing vat photopolymerization of DSMR using high‐area rapid printing digital light processing additive manufacturing is demonstrated. 
    more » « less